PARAMETER SURVEY

- 1. Choose the 3 parameters most likely to have a nonrandom effect on both area and volume of sea ice, in all seasons and in both hemispheres.
- 2. Choose the 2 parameters least likely to have such an effect.

Symbol	Description	Typical Value (CICE)	
C_f	ratio of ridging work rate to rate of change in potential energy (frictional dissipation)	17	1. Most likely:
C_s	fraction of shear energy contributing to ridging	0.5	•
C_w	ocean-ice drag coefficient	0.00536	•
e	ratio of ellipse major to minor axes (viscous-plastic rheology)	2	
f_{srdg}	fraction of snow thrown into the ocean from ridging ice	0.5	2. Least likely:
ϵ	emissivity	0.95	•
SSL_i	surface scattering layer depth in ice for radiative absorption, surface temperature	5 cm	•
SSL_s	surface scattering layer depth in snow for radiative absorption, surface temperature	4 cm	
$ ho_s$	snow density	$330~\rm kg/m^3$	
k_s	snow conductivity	$0.3~\mathrm{W/m/K}$	
k_b	brine conductivity	$0.5375~\mathrm{W/m/K}$	
dS/dt	strength of "slow" brine drainage	$\text{-}1.5{\times}10^{-7}~\text{m/s/K}$	
$ u_b$	dynamic viscosity of brine	$1.79{\times}10^{-3}~\mathrm{kg/m/s}$	
f_{min}	minimum fraction of available meltwater that enters ponds	0.15	